Farmers' knowledge of wind erosion processes and control methods in Niger

Author(s):  
G. Sterk ◽  
J. Haigis
2019 ◽  
pp. 223-240 ◽  
Author(s):  
Gábor Négyesi ◽  
József Lóki ◽  
Botond Buró ◽  
Boglárka Bertalan-Balázs ◽  
László Pásztor

Wind erosion is one of the most important land degradation processes in Hungary in the areas with low yearly precipitation values. The total land area suffering from wind erosion is approximately 10,000 km2, 10 per cent of the country area. Observations and discussions on wind erosion and its negative impacts in Hungary started in the last century. Since the 1950s, scientists investigated wind erosion processes and its role in the evolution of alluvial fans in an integrative way, including laboratory measurements and field observations with respect to the stabilization and utilization of soils in agricultural areas. Since the late 2000s, there is an increasing demand worldwide to characterize the role of climate change and human activities in triggering land degradation processes. Studies have been conducted to investigate the mechanics, causes and control techniques related to wind erosion applying laboratory and field wind tunnel simulation tests and field observations. Some encouraging achievements have been made. In this paper we summarize the main research results of wind erosion research, and put forward some perspectives and suggestions on the problems of wind erosion research and control practices in Hungary.


2021 ◽  
Vol 226 ◽  
pp. 108826
Author(s):  
Chenguang Liu ◽  
Junlin Qi ◽  
Xiumin Chu ◽  
Mao Zheng ◽  
Wei He

2021 ◽  
Vol 787 (1) ◽  
pp. 012027
Author(s):  
Yudian Li ◽  
Jiajie Dong ◽  
Kai Fei ◽  
Hao Song ◽  
Zeyi Li ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 37
Author(s):  
Vaughan Murphy ◽  
Brandon P. R. Edmonds ◽  
Ana Luisa Trejos

Twisted coiled actuators (TCAs) are a type of soft actuator made from polymer fibres such as nylon sewing thread. As they provide motion in a compact, lightweight, and flexible package, they provide a solution to the actuation of wearable mechatronic devices for motion assistance. Their limitation is that they provide low total force, requiring them to actuate in parallel with multiple units. Previous literature has shown that the force and stroke production can be improved by incorporating them into fabric meshes. A fabric mesh could also improve the contraction efficiency, strain rate, and user comfort. Therefore, this study focused on measuring these performance metrics for a set of TCAs embedded into a woven fabric mesh. The experimental results show that the stroke of the actuators scaled linearly with the number of activated TCAs, achieving a maximum applied force of 11.28 N, a maximum stroke of 12.23%, and an efficiency of 1.8%. Additionally, two control methods were developed and evaluated, resulting in low overshoot and steady-state error. These results indicate that the designed actuators are viable for use in wearable mechatronic devices, since they can scale to meet different requirements, while being able to be accurately controlled with minimal additional components.


Sign in / Sign up

Export Citation Format

Share Document